top of page

Structure in Motion

dSt​=μ(St​,t)dt+σ(St​,t)dWt​

On (Ω,F,(Ft)t≥0,P)(Ω,F,(Ft​)t≥0​,P), with WtWt​ a Brownian motion, the asset price StSt​ is an FtFt​-adapted semimartingale with drift μ(St,t)μ(St​,t) and diffusion σ(St,t)σ(St​,t). Under an equivalent martingale measure QQ, the discounted price is a martingale, yielding arbitrage-free valuation, pricing consistency, and tractability under both physical and risk-neutral measures. This forms the baseline from which broader and more refined modeling frameworks are developed.

Notation

  • St​: asset price

  • μ(St,t)μ(St​,t): drift (expected return)

  • σ(St,t)σ(St​,t): volatility (diffusion coefficient)

  • WtWt​: Wiener process (Brownian motion)

Extensions

Brownian models omit fat tails, clustering, and jumps; modeled through:

  • Stochastic volatility: Heston, CIR/OU factors

  • Rough volatility: fractional Brownian components

  • Jump–diffusion: Poisson, Merton, Bates

  • Lévy processes: infinite-activity jumps

  • Regime switching: Markov state models

  • Multi-asset systems: correlated vector SDEs

  • Control formulations: HJB-based optimal control

Methodology

  • Measures: Girsanov, Esscher, numeraire change

  • Filtering: Kalman, particle, Bayesian

  • Simulation: Monte Carlo, quasi, variance reduction

  • Estimation: MLE, GMM, Bayesian

  • Numerics: PDE, FFT, BSDE

  • Control: HJB, dynamic programming

Calibration

  • Surfaces: skew, smile, term-structure

  • High-freq: realized variance, bipower

  • Estimation: MLE, Bayesian, spectral

  • Robustness: stability, regime sensitivity

  • Microstructure: order book, liquidity

Applications

  • Option pricing: Heston, jumps, Lévy

  • Portfolio: HJB, BSDEs

  • Risk: tails, jumps, contagion

  • Execution: trading, liquidity

  • Digital assets: microstructure, fragmentation

bottom of page